Files
mt/tools/plot_scripts/results_inference_timeline smoothed.py
Jan Kowalczyk e7624d2786 wip inference
2025-09-15 11:21:30 +02:00

270 lines
8.7 KiB
Python

import json
import pickle
import shutil
from datetime import datetime
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
# =========================
# User-configurable params
# =========================
# Single experiment to plot (stem of the .bag file, e.g. "3_smoke_human_walking_2023-01-23")
EXPERIMENT_NAME = "3_smoke_human_walking_2023-01-23"
# Directory that contains {EXPERIMENT_NAME}_{method}_scores.npy for methods in {"deepsad","ocsvm","isoforest"}
methods_scores_path = Path(
"/home/fedex/mt/projects/thesis-kowalczyk-jan/Deep-SAD-PyTorch/infer/DeepSAD/test/inference"
)
# Root data path containing .bag files used to build the cached stats
all_data_path = Path("/home/fedex/mt/data/subter")
# Output base directory (timestamped subfolder will be created here, then archived and copied to "latest/")
output_path = Path("/home/fedex/mt/plots/results_inference_timeline_smoothed")
# Cache (stats + labels) directory — same as your original script
cache_path = output_path
# Assumed LiDAR frame resolution to convert counts -> percent (unchanged from original)
data_resolution = 32 * 2048
# Frames per second for x-axis time
FPS = 10.0
# Whether to try to align score sign so that higher = more degraded.
ALIGN_SCORE_DIRECTION = True
# =========================
# Smoothing configuration
# =========================
# Options: "none", "moving_average", "gaussian", "ema"
SMOOTHING_METHOD = "ema"
# Moving average window size (in frames). Use odd number for symmetry; <=1 disables.
MA_WINDOW = 11
# Gaussian sigma (in frames). ~2-3 frames is mild smoothing.
GAUSSIAN_SIGMA = 2.0
# Exponential moving average factor in (0,1]; smaller = smoother. ~0.2 is a good start.
EMA_ALPHA = 0.1
# =========================
# Setup output folders
# =========================
datetime_folder_name = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
latest_folder_path = output_path / "latest"
archive_folder_path = output_path / "archive"
output_datetime_path = output_path / datetime_folder_name
output_path.mkdir(exist_ok=True, parents=True)
output_datetime_path.mkdir(exist_ok=True, parents=True)
latest_folder_path.mkdir(exist_ok=True, parents=True)
archive_folder_path.mkdir(exist_ok=True, parents=True)
# =========================
# Discover experiments
# =========================
normal_experiment_paths, anomaly_experiment_paths = [], []
for bag_file_path in all_data_path.iterdir():
if bag_file_path.suffix != ".bag":
continue
if "smoke" in bag_file_path.name:
anomaly_experiment_paths.append(bag_file_path)
else:
normal_experiment_paths.append(bag_file_path)
normal_experiment_paths = sorted(
normal_experiment_paths, key=lambda p: p.stat().st_size
)
anomaly_experiment_paths = sorted(
anomaly_experiment_paths, key=lambda p: p.stat().st_size
)
# Find experiment
exp_path, exp_is_anomaly = None, None
for p in anomaly_experiment_paths:
if p.stem == EXPERIMENT_NAME:
exp_path, exp_is_anomaly = p, True
break
if exp_path is None:
for p in normal_experiment_paths:
if p.stem == EXPERIMENT_NAME:
exp_path, exp_is_anomaly = p, False
break
if exp_path is None:
raise FileNotFoundError(f"Experiment '{EXPERIMENT_NAME}' not found")
exp_index = (
anomaly_experiment_paths.index(exp_path)
if exp_is_anomaly
else normal_experiment_paths.index(exp_path)
)
# =========================
# Load cached statistical data
# =========================
with open(cache_path / "missing_points.pkl", "rb") as f:
missing_points_normal, missing_points_anomaly = pickle.load(f)
with open(cache_path / "particles_near_sensor_counts_500.pkl", "rb") as f:
near_sensor_normal, near_sensor_anomaly = pickle.load(f)
if exp_is_anomaly:
missing_points_series = np.asarray(missing_points_anomaly[exp_index], dtype=float)
near_sensor_series = np.asarray(near_sensor_anomaly[exp_index], dtype=float)
else:
missing_points_series = np.asarray(missing_points_normal[exp_index], dtype=float)
near_sensor_series = np.asarray(near_sensor_normal[exp_index], dtype=float)
missing_points_pct = (missing_points_series / data_resolution) * 100.0
near_sensor_pct = (near_sensor_series / data_resolution) * 100.0
# =========================
# Load manual anomaly frame borders
# =========================
manually_labeled_anomaly_frames = {}
labels_json_path = cache_path / "manually_labeled_anomaly_frames.json"
if labels_json_path.exists():
with open(labels_json_path, "r") as f:
labeled_json = json.load(f)
for file in labeled_json.get("files", []):
manually_labeled_anomaly_frames[file["filename"]] = (
file.get("semi_target_begin_frame"),
file.get("semi_target_end_frame"),
)
exp_npy_filename = exp_path.with_suffix(".npy").name
anomaly_window = manually_labeled_anomaly_frames.get(exp_npy_filename, (None, None))
# =========================
# Load method scores and normalize
# =========================
def zscore_1d(x, eps=1e-12):
mu, sigma = np.mean(x), np.std(x, ddof=0)
return np.zeros_like(x) if sigma < eps else (x - mu) / sigma
def maybe_align_direction(z, window):
start, end = window
if start is None or end is None:
return z
inside_mean = np.mean(z[start:end]) if end > start else 0
outside = np.concatenate([z[:start], z[end:]]) if start > 0 or end < len(z) else []
outside_mean = np.mean(outside) if len(outside) else inside_mean
return z if inside_mean >= outside_mean else -z
methods = ["deepsad", "ocsvm", "isoforest"]
method_zscores = {}
for m in methods:
s = np.load(methods_scores_path / f"{EXPERIMENT_NAME}_{m}_scores.npy")
s = np.asarray(s, dtype=float).ravel()
n = min(len(s), len(missing_points_pct))
s, missing_points_pct, near_sensor_pct = (
s[:n],
missing_points_pct[:n],
near_sensor_pct[:n],
)
z = zscore_1d(s)
if ALIGN_SCORE_DIRECTION:
z = maybe_align_direction(z, anomaly_window)
method_zscores[m] = z
# =========================
# Smoothing
# =========================
def moving_average(x, window):
if window <= 1:
return x
if window % 2 == 0:
window += 1
return np.convolve(x, np.ones(window) / window, mode="same")
def gaussian_smooth(x, sigma):
from scipy.ndimage import gaussian_filter1d
return gaussian_filter1d(x, sigma=sigma, mode="nearest") if sigma > 0 else x
def ema(x, alpha):
y = np.empty_like(x)
y[0] = x[0]
for i in range(1, len(x)):
y[i] = alpha * x[i] + (1 - alpha) * y[i - 1]
return y
def apply_smoothing(x):
m = SMOOTHING_METHOD.lower()
if m == "none":
return x
if m == "moving_average":
return moving_average(x, MA_WINDOW)
if m == "gaussian":
return gaussian_smooth(x, GAUSSIAN_SIGMA)
if m == "ema":
return ema(x, EMA_ALPHA)
raise ValueError(f"Unknown SMOOTHING_METHOD: {SMOOTHING_METHOD}")
smoothed_z = {k: apply_smoothing(v) for k, v in method_zscores.items()}
smoothed_missing = apply_smoothing(missing_points_pct)
smoothed_near = apply_smoothing(near_sensor_pct)
# =========================
# Plot
# =========================
t = np.arange(len(missing_points_pct)) / FPS
def plot_series(y2, ylabel, fname, title_suffix):
fig, axz = plt.subplots(figsize=(14, 6), constrained_layout=True)
axy = axz.twinx()
for m in methods:
axz.plot(t, smoothed_z[m], label=f"{m} (z)")
axy.plot(t, y2, linestyle="--", label=ylabel)
start, end = anomaly_window
if start and end:
axz.axvline(start / FPS, linestyle=":", alpha=0.6)
axz.axvline(end / FPS, linestyle=":", alpha=0.6)
axz.set_xlabel("Time (s)")
axz.set_ylabel("Anomaly score (z)")
axy.set_ylabel(ylabel)
axz.set_title(f"{EXPERIMENT_NAME}\n{title_suffix}\nSmoothing: {SMOOTHING_METHOD}")
lines1, labels1 = axz.get_legend_handles_labels()
lines2, labels2 = axy.get_legend_handles_labels()
axz.legend(lines1 + lines2, labels1 + labels2, loc="upper right")
axz.grid(True, alpha=0.3)
fig.savefig(output_datetime_path / fname, dpi=150)
plt.close(fig)
plot_series(
smoothed_missing,
"Missing points (%)",
f"{EXPERIMENT_NAME}_zscores_vs_missing.png",
"Degradation vs Missing Points",
)
plot_series(
smoothed_near,
"Near-sensor points (%)",
f"{EXPERIMENT_NAME}_zscores_vs_near.png",
"Degradation vs Near-Sensor Points (<0.5m)",
)
# =========================
# Save & archive
# =========================
shutil.rmtree(latest_folder_path, ignore_errors=True)
latest_folder_path.mkdir(exist_ok=True, parents=True)
for f in output_datetime_path.iterdir():
shutil.copy2(f, latest_folder_path)
shutil.copy2(__file__, output_datetime_path)
shutil.copy2(__file__, latest_folder_path)
shutil.move(output_datetime_path, archive_folder_path)
print("Done. Plots saved and archived.")